AIA 1 LU/HSW

Energy Decarbonization Blueprint

AIA LA – July 2024

Business Confidential - Willdan

Speaker

Rich Peske

Energy Project Manager Willdan rpeske@willdan.com

California Energy Design Assistance CaliforniaEDA.com

Enrollment	Technical Assistance	Final Analysis	Earn
Enroll today at CaliforniaEDA.com	Whole building decarbonization analysis during early design	Verification of savings at construction completion	Long term carbon savings and incentives from partnering utilities
Optimize Carbon Savings on Your Next New Construction or Major Renovation Project by Enrolling Today!			

Abstract and Learning Objectives

Utilizing **four case studies**, this course explores how to create a new blueprint for energy decarbonization that aligns with the changing electric grid. An overview of energy infrastructure changes that are taking place in the state of California will be provided alongside how these changes impact the types of building systems being considered for a multi-family building, a school, a healthcare project, and an office building. The course will explore the carbon impacts of each case study both today and in the future as the electric grid continues to decarbonize utilizing expected average carbon emissions for 2030 and 2050.

Learning Objectives:

- Identify how the decarbonization of the CA electric grid impacts the built environment
- 2. Describe challenges and opportunities in decarbonizing typical project types from an energy standpoint
- Describe the difference in decarbonization impacts between today's grid and the expected grid in 2030 and 2050
- 4. Create an energy decarbonization blueprint for your firms' projects

Buildings' Contribution to Carbon Emissions

Architects Value Sustainable Design But...

- Clients aren't interested or asking for it
- Budgets are too tight
- Developers don't care about ongoing maintenance and energy costs
- Paybacks are too long
- Timeline is too short to consider options

- Contractors or Facility Managers aren't comfortable with it
- Measures just get removed in value engineering
- Not in our scope of work

Business Confidential - Willdan

- It's the engineer's problem to solve
- Not required by code

Buildings with high operating carbon

- Slow the transition to clean energy
- Are less adaptable and resilient, causing...
 - Faster depreciation
 - Decreased profits
- Vulnerable to future policy changes
 - Higher utility rates
 - Carbon taxes
- Potential to become stranded assets

Electricity as a power source is relatively young

Electricity Production

Widespread Solar Impact on Grid

- Significant reduction in net demand during the day
- Steep ramp-up of demand between 4 pm and 7 pm

Variable renewable production needs to be balanced with dispatchable power or demand.

California's Grid Mix in 2020

- Compared to National Average
 - More renewables
 - Much less coal
 - More natural gas
- Grid continues to decarbonize with non-dispatchable solar and wind
- Duck curve is going to continue to grow

Electric Grid is Getting Cleaner

- Reduction in coal power plants replaced with renewables and natural gas plants
- City bans on new natural gas hook-ups
- California Public Utility Commission retired subsidies on new natural gas connections
- States and local governments encouraging all-electric power in new buildings
- Renewables are becoming more cost effective
- Testing utility grade battery storage

Demand Response and Time-of-Use Rate Structures

Demand Response:

Financial incentives to reduce energy consumption during peak incidents

Time-of-Use Rate Structure:

Rate per kilowatt hour changes throughout the day

Variables Impacting Energy Analysis Results

- Climate
- Building type/function
- Building form/size
- Window to wall area ratio
- Hours of operation/usage

Architectural

- Roof R-Value
- Wall R-Value
- Glass U-Value
- Glass SHGC

Lighting

- Occupancy Sensors
- Lighting Power Density
- Dimming Daylighting Control

Mechanical

- HVAC System Types
- Heating Efficiency
- Heat Recovery
- Cooling Efficiency

Building Decarbonization Toolkit

Recap - Rules Of Thumb Alone Won't Solve This Challenge

The energy grid is continuously evolving

4

5

Our current structure is not a sustainable business model and rates keep changing

There are too many variables that impact energy use in a building for a one-size-fits-all solution

Building system technology keeps evolving and improving

Decarbonization Methodology

Energy Modeling Tool Advancement

Comparative Analysis

Models Are Perfect ... Right?

Energy models are nearly 100% accurate ... provided you can accurately predict the three main variables:

- Human behavior
- Climate and Weather
- Energy prices

The Method: Start Early, Stay at It

Case Studies

Case Study Building Types

Case Study Locations

Mechanical Systems for Case Studies

Natural Gas

- VAV System with Air Cooled Chiller and Gas Boiler
- Gas fired VTACs in apartments with packaged rooftop units for common spaces
- Gas fired water heaters

All-Electric

- Air Source Heat Pumps with electric back up
- Electric resistance water heaters

🥒 Su

Sustainable

- Ground coupled water loop heat pumps
- Heat pump water heaters

System Assumptions

Mechanical Assumptions

- Chiller: 1.12 kW/ton
- Condensing Boiler: 95% efficient
- Gas furnace: 95% efficient
- DX cooling: 12.1 EER
- Air Source Heat Pump: 12.1 EER/ 3.63 COP
- Water Loop Heat Pump: 16.9 EER/ 3.84 COP
- Demand control ventilation included where applicable

Architectural Assumptions

Slightly above code minimums

田

- Aluminum windows with slightly above code minimums for U-factor and Solar heat gain coefficient
- Vinyl windows in apartments

Lighting Assumptions

- LED Lights throughout
- Lighting controls as required by code

Carbon Impact by System

Annual Carbon Emissions by Energy Source - Multifamily (NorCal)

Annual Carbon Emissions by Energy Source - Multifamily (SoCal)

Annual Carbon Emissions by Energy Source - K12 (NorCal)

Annual Carbon Emissions by Energy Source - K12 (SoCal)

Annual Carbon Emissions by Energy Source - Office (NorCal)

Annual Carbon Emissions by Energy Source – Office (SoCal)

Annual Carbon Emissions by Energy Source – Healthcare Clinic(NorCal)

Annual Carbon Emissions by Energy Source – Healthcare Clinic(SoCal)

Business Confidential - Willdan

Key Takeaways

Installing natural gas equipment in new buildings locks in those carbon emissions for the life of the equipment

The electric grid is getting cleaner each year - which has a profound impact on carbon emissions of the built environment Installing efficient electric equipment will allow the building to decarbonize along with the electrical grid Electrifying buildings is key to decarbonizing the built environment

Impact of Solar Energy

Annual Carbon Emissions by Energy Source (w/ PV roof coverage) – Multifamily (NorCal)

Key Takeaways

There is a diminishing return on solar from a carbon standpoint as the grid gets cleaner. Solar is a key strategy for reducing annual energy costs and is required by code for certain building uses

Electrify as many end uses as possible first to receive the maximum benefit of solar

Battery storage paired with solar will be an important strategy for operating cost reduction in the future

Carbon by End Use

2026 Carbon Emissions by End Use - Multifamily (NorCal)

2026 Carbon Emissions by End Use - K12 (NorCal)

2026 Carbon Emissions by End Use - Office (NorCal)

Business Confidential - Willdan

2026 Carbon Emissions by End Use - Healthcare (NorCal)

Business Confidential - Willdan

Key Takeaways

Water heating is the biggest carbon usage in apartments and school facilities Plug loads and fan energy in offices and healthcare are opportunities for carbon reduction

Minimal savings impact is left from lighting -- LEDs have made electric lights very efficient In the next 5 years 460 Million Square Feet of new construction apartments are expected to be built in California

Other Considerations

Equipment Life

Building Loads

EXTERNAL

- Wall/Roof (including infiltration)
- Windows

Winter Mode

Summer Mode

INTERNAL

- Occupants
- Lighting/Equipment
- Ventilation

Internal Loads - Occupant Activity

Building types house different activities that influence heating and cooling loads

Key Takeaways

Building envelope impacts heating and cooling loads and has a life-long impact on carbon reduction Additional carbon reductions can be found by balancing envelope strategies, building systems, and project budget/goals

More carbon reductions can be found when we analyze impacts of internal loads Decarbonization analysis can help identify areas where additional savings can be found

Conclusions and Discussion

Start in SD and DD

Key Takeaways

The landscape of power generation is changing and contributes significantly to carbon reduction.

Utilize energy modeling to explore load balancing and carbon emissions. Assess carbon reduction, with today and future emission rates, to design buildings for the future.

Make a commitment to include low carbon design strategies in the development of every project.

